Removable singularities for weighted Bergman spaces

ثبت نشده
چکیده

We develop a theory of removable singularities for the weighted Bergman space Aμ(Ω) = {f analytic in Ω : R Ω |f | dμ < ∞}, where μ is a Radon measure on C. The set A is weakly removable for Aμ(Ω \ A) if Aμ(Ω \ A) ⊂ Hol(Ω), and strongly removable for Aμ(Ω \A) if Aμ(Ω \A) = Aμ(Ω). The general theory developed is in many ways similar to the theory of removable singularities for Hardy H spaces, BMO and locally Lipschitz spaces of analytic functions, including the existence of counterexamples to many plausible properties, e.g. the union of two compact removable singularities needs not be removable. In the case when weak and strong removability are the same for all sets, in particular if μ is absolutely continuous with respect to the Lebesgue measure m, we are able to say more than in the general case. In this case we obtain a Dolzhenko type result saying that a countable union of compact removable singularities is removable. When dμ = w dm and w is a Muckenhoupt Ap weight, 1 < p <∞, the removable singularities are characterized as the null sets of the weighted Sobolev space capacity with respect to the dual exponent p′ = p/(p− 1) and the dual weight w′ = w1/(1−p).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removable singularities for analytic functions in BMO and locally Lipschitz spaces

In this paper we study removable singularities for holomorphic functions such that supz∈Ω |f (z)|dist(z, ∂Ω) < ∞. Spaces of this type include spaces of holomorphic functions in Campanato classes, BMO and locally Lipschitz classes. Dolzhenko (1963), Král (1976) and Nguyen (1979) characterized removable singularities for some of these spaces. However, they used a different removability concept th...

متن کامل

Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces

In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.

متن کامل

Removable singularities for Hardy spaces

In this paper we study removable singularities for Hardy spaces of analytic functions on general domains. Two different definitions are given. For compact sets they turn out to be equal and moreover independent of the surrounding domain, as was proved by D. A. Hejhal. For non-compact sets the difference between the definitions is studied. A survey of the present knowledge is given, except for t...

متن کامل

Weighted Bergman kernels on orbifolds

We describe a notion of ampleness for line bundles on orbifolds with cyclic quotient singularities that is related to embeddings in weighted projective space, and prove a global asymptotic expansion for a weighted Bergman kernel associated to such a line bundle.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009